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Ciphers:	Overview

• Encrypt	an	arbitrary	length	binary	string	using	
a	shared	secret	key

• Provide	confidentiality



Ciphers:	Algorithms

KeyGen
(1λ)	
→	k

Generates	a	secret	
key	k.

Encrypt
(k,	iv,	m)	
→	c

Encrypt	a	message	m	
using	secret	key	k	
and	initialization	
vector	iv	to	obtain	
ciphertext c.

Decrypt
(k,	iv,	c)	
→	m

Decrypt	a	ciphertext
c	using	secret	key	k	
and	initialization	
vector	iv	to	obtain	
message	m.

Need	an	IV	so	that	we	can	encrypt	
different	messages	using	the	same	key.
(IV	omitted	in	older	cipher	designs.)



Ciphers:	Security

Adaptive	chosen	
ciphertext attack

• adversary	can	
adaptively	obtain	
encryptions	of	any	
messages	and	
decryptions	of	any	
ciphertexts of	his	
choosing

Indistinguishability

• the	adversary	cannot	
distinguish	which	of	two	
messages	m0 or	m1 of	its	
choosing	was	encrypted
• equivalent	to	semantic	
security:	attacker	learns	
"nothing	useful"	from	
seeing	ciphertext

Security	goal:	indistinguishability under	adaptive	
chosen	ciphertext attack	(IND-CCA2).
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Stream	ciphers:	Overview

• Recall	one-time	pad:	message	is	XORed with	
an	encryption	key	of	the	same	length

• Stream	cipher	encryption/decryption	
performed	by	having	a	keystream generator
output	a	long	encryption	key	from	a	short	
secret	key,	then	XOR	the	long	encryption	key	
with	the	message



Stream	ciphers:	Overview

plaintext � ciphertext

keystream generator

key

IV

keystream



Stream	ciphers:	Schemes

• One	common	construction:	linear	feedback	
shift	registers	+	non-linear	filter	or	other	non-
linearity

Standardized schemes

RC4 Weak;	exploitable	biases	in	keystream output.

A5/1	(A5/2) Used	in	mobile	phone	communications;	weak.

Salsa20	/	ChaCha20 Family	of	extremely	fast	stream ciphers,	ChaCha20	
starting	to	be	standardized.
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Block	ciphers:	Overview

• Message	is	divided	into	fixed-length	blocks
• Each	block	is	separately	encrypted	using:
– a	derived	key
– an	initialization	vector
– the	message	block



Block	ciphers:	
Data	Encryption	Standard	(DES)

• Standardized	by	NIST	in	1977	based	on	IBM	
design

• (effective)	56-bit	key
• Uses	a	16-round	Feistel network

• Widely	used	in	applications,	some	still	active
• Small	keyspace means	can	be	readily	brute	force	
searched,	in	just	a	few	hours	on	modern	
computers

• Triple-DES	uses	three	applications	of	DES	to	
provide	112-bit	security



Block	ciphers:	
Advanced	Encryption	Standard	(AES)
• Standardized	by	NIST	in	2001	after	an	open	
competition,	winner	was	Rijndael

• 128-,	192-,	or	256-bit	key
• Uses	10-14	rounds	of	a	substitution-permutation	
network

• Widely	used	in	applications
• Very	fast	on	modern	computers	due	to	special	
processor	instruction	(AES-NI)

• No	practical	attacks,	theoretical	attacks	barely	
better	than	brute	force



Block	ciphers:	
Substitution-permutation	network

XOR	in	subkey K1

Apply	highly	non-linear	
substitutionmappings

Apply	permutation

Continue	with	next	round



Block	ciphers:	Modes	of	operation

• Since	plaintext	is	divided	into	blocks	when	we	
use	block	ciphers,	how	should	we	process	
multi-block	messages?



Block	ciphers:	
Electronic	Codebook	(ECB)	mode

images	courtesy	of	Wikipedia

If	encryption	is	deterministic,	then	the	
same	plaintext	block	is	encrypted	to	the	
same	ciphertext block	every	time.



Block	ciphers:
Cipher	Block	Chaining	(CBC)	mode

images	courtesy	of	Wikipedia



Block	ciphers:	ECB	vs CBC	mode

Original	image ECB	mode CBC	mode

images	courtesy	of	Wikipedia



Block	ciphers:	Modes	of	operations

• Many	different	modes	with	many	different	
properties

• Some	more	suitable	for:
– streaming	media	(lossy communication)
– parallel	processing
– disk	encryption

• Some	provide	integrity	checking



Block	ciphers	vs.	stream	ciphers

Block	ciphers
• Often	slower
• More	complex	

implementation
• Better	for	storage
• Some	modes	good	for	

streaming	communication
• Viewed	as	being	more	

secure

Stream	ciphers
• Often	faster
• Often	easier	to	implement	

in	software	and	hardware
• Better	for	streaming	

communication
• Viewed	as	being	less	secure
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Hash	Functions:	Overview

• Hashes	an	arbitrary	length	binary	string	into	a	
fixed	length	binary	string

• Useful	for	integrity	and	data	origin	
authentication



Hash	Functions:	Algorithms

Keyed	hash	function	(family)

KeyGen()
→ k

Generates	a	hash	
key	k.

H(k,	m)	
→ h

Hashes	a	message	
m	under	a	key	k	to	
obtain	a	hash	h.

Unkeyed hash	function

H(m)	
→ h

Hashes	a	
message	m	to	
obtain	a	hash	
h.

(Note	k	need	not	be	secret,	just	random.)



Hash	Functions:	Security

Collision	
resistance

• It	is	hard	to	find	
two	distinct	
values	x0 and	x1
such	that	
H(x0)=H(x1)

Preimage
resistance

• Let	x	be	chosen	
at	random.	
Given	y=H(x),	it	
is	hard	to	find	
x’	such	that	
H(x’)=y.

Second	preimage
resistance

• Let	x	be	chosen	
at	random.	
Given	x,	it	is	
hard	to	find	a	
distinct	x’	such	
that	H(x)=H(x’).



Merkle–Damgård Construction

m1 m2 m3 . . . m`kpad pad

h h h
. . .

h h
IV H(m)

Common	technique	for	constructing	an	
arbitrary-length	hash	function	H from	a	
fixed-length	compression	function	h.



Hash	Functions:	Schemes
Standardized schemes

MD5 Collision	resistance	broken.

SHA-1 Weak.	Widely	deployed.

SHA-2	(SHA-256, SHA-384,	
SHA-512) Generally secure.	Deployment	in	progress.

SHA-3	(a.k.a.	Keccak) Winner	of	NIST	competition.	NIST	standarization
August	2015;	few	deployments.

Quantum	impact:	For	an	n-bit	hash	function,	Grover:
• pre-images	in	time	2n/2 (compared	to	2n classically)
• collisions	in	time	2n/3 (compared	to	2n/2 classically)

Provably secure	schemes	(generally	slower)

Lattice-based Based	on	learning	with	errors	/	shortest	vector	
problem

RSA-based Based	on	factoring	/	RSA	problem.

Quantum	fingerprinting A	quantum	analogue	of	hashing
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Message	Authentication	Codes:	
Overview

• Creates	an	authentication	tag	for	a	message.

• Provides	integrity	and	data	origin	
authentication



MACs:	Algorithms

KeyGen()
→ k

Generates	a	
MAC	key	k.

MAC(k,	m)	
→ t

Computes	a	
tag	t	for	a	
message	m	
under	key	k.

Sender	computes	tag	and	sends	tag	and	message;	
verifier	recomputes tag	and	compares	with	received	value.



MACs:	Security

Chosen	message	attack

•adversary	can	
adaptively	obtain	tags	
for	any	messages	of	
his	choosing

Existential	
unforgeability

• hard	to	construct	a	new	
valid	message/tag	pair	
(note:	message	doesn’t	
have	to	be	
“meaningful”)

Security	goal:	existential	unforgeability under	
chosen	message	attack	(EUCMA).



MACs:	Schemes
Standardized schemes
HMAC-MD5
HMAC-SHA1
HMAC-SHA256
…

Almost universally	used.

Quantum	impact: For	an	n-bit	key,	Grover	can	break	in	time	2n/2

Other	schemes

Wegman–Carter Information-theoretically	secure.

Poly1305-AES High	speed.
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Pseudorandom	Functions:	Overview

• Generates	a	binary	string	that	is	
indistinguishable	from	random

• Useful	for	confidentiality	and	key	generation



Pseudorandom	Functions:	Algorithms

KeyGen()
→ k

Generates	a	
secret	key.

F(k,	x)	→ y
Generates	a	
pseudorandom	
string	y	from	a	
seed	x	and	key	k.



Pseudorandom	functions:	Security

F(k,	x)			(unknown	k) Random(x)

Security	goal:	pseudorandomness:
– Hard	to	distinguish	the	output	of	F(k,	x)	from	the	output	of	a	

truly	random	function	Random(x).

A

x

Did	I	get	the	answer	from	real	or	random?

50% 50%



PRFs	versus	PRNGs	versus	KDFs

PRF
• Pseudorandom	

function

• Input:	(short)	
uniform	random	
key

• Output:	(longer)	
computationally	
uniform	random	
string

PRNG
• Pseudorandom	

number	
generator

• Input:	(short)	
random	seed

• Output:	(longer)	
computationally	
uniform	random	
string

• Update	
mechanism

KDF
• Key	derivation	

function

• Input:	(medium)	
(non-uniform)	
random	key

• Output:	(short)	
computationally	
uniform	random	
key



PRFs,	PRNGs,	KDFs:	Schemes

• PRNGs	on	computers	also	need	to	set	and	
update	seeds	from	a	source	of	entropy

Standardized Schemes

Ad hoc	constructions	based	on	hash	functions,	HMAC,	stream	ciphers

HMAC Often	used	as	a	PRF	or	KDF.

Dual_EC_DRBG NIST	provably	secure	scheme	based	on	elliptic	curves,	
has	a	backdoor.

PBKDF2,	Argon2 Used	for	deriving	pseudorandom	keys	from	passwords.

HKDF Provably	secure.
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Public	Key	Encryption:	Overview

• Alice	creates	a	private	key	/	public	key	pair
• Anyone	can	encrypt	messages	for	Alice	based	
on	her	public	key,	but	only	Alice	can	decrypt	
those	messages

• Provide	confidentiality

• Versus	ciphers:	Anyone	can	encrypt	using	
public	key,	whereas	you	need	the	shared	
secret	for	encrypting	with	ciphers.



Public	Key	Encryption:	Algorithms

KeyGen()	
→	(sk,	pk)

Generates	a	private	
key	sk and	a	public	
key	pk.

Encrypt(pk,	m)	
→	c

Encrypt	a	message	m	
using	public	key	pk to	
obtain	ciphertext c.

Decrypt(sk,	c)	
→	m

Decrypt	a	ciphertext
c	using	private	key	sk
to	obtain	message	m.



Public	Key	Encryption:	Security

Adaptive	chosen	
ciphertext attack

• adversary	can	
adaptively	obtain	
decryptions	of	any	
ciphertexts of	his	
choosing

Indistinguishability

• the	adversary	cannot	
distinguish	which	of	two	
messages	m0 or	m1 of	its	
choosing	was	encrypted

Security	goal:	indistinguishability under	adaptive	
chosen	ciphertext attack	(IND-CCA2).



Public	Key	Encryption:	Schemes
Standardized schemes

RSA	PKCS#1 Based	on	factoring

DHIES Based	on	finite-field	discrete	logarithms

ECIES Based	on	elliptic	curve	discrete logarithms

Quantum	impact: Shor’s algorithm	can	break	all	of	these	in	polynomial	time.

Post-quantum	schemes

Lattice-based
Based on	(ring)	learning-with-errors	problem

Based	on	NTRU	problem

Code-based Based	on	bounded distance	decoding	problem

Multi-variate quadratic



Hybrid	encryption
To	encrypt	a	long	message	m,	typically	use	
hybrid	public	key	encryption:	

1. Pick	a	random	secret	key	k	for	a	symmetric	
cipher	like	AES.

2. c1 ←	AES.Encrypt(k,	m)
3. c2 ←	RSA.Encrypt(pk,	k)
4. ciphertext =	(c1,	c2)

Faster	than	encrypting	the	whole	message	using	
public	key	encryption.
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Digital	Signatures:	Overview

• Alice	creates	a	private	key	/	public	key	pair
• Only	the	person	with	the	private	key	(Alice)	can	
create	valid	signatures,	but	anyone	with	the	
public	key	can	verify

• Provide	data	origin	authentication,	integrity,	non-
repudiation

• Useful	for	entity	authentication

• Versus	MACs:	Anyone	can	verify	using	public	key.



Digital	Signatures:	Algorithms

KeyGen()	
→	(sk,	vk)

Generates	a	signing	
key	sk and	a	
verification	key	vk.

Sign(sk,	m)	
→	σ

Sign	a	message	m	
using	signing	key	sk
to	obtain	a	signature	
σ.

Verify
(vk,	m,	σ)	
→	{0,1}

Check	validity	of	
signature	σ of	a	
message	m	under	
verification	key	vk
and	output	0	or	1.



Digital	Signatures:	Security

Chosen	message	attack

•adversary	can	
adaptively	obtain	
signatures	for	any	
messages	of	his	
choosing

Existential	
unforgeability

• hard	to	construct	a	new	
valid	signature/message	
pair	(note:	message	
doesn’t	have	to	be	
“meaningful”)

Security	goal:	existential	unforgeability under	
chosen	message	attack	(EUCMA).



Digital	Signatures:	Schemes

Standardized schemes

RSA	PKCS#1 Based	on	factoring

DSA Based	on	finite-field	discrete	logarithms

ECDSA Based	on	elliptic	curve	discrete logarithms

Quantum	impact: Shor’s algorithm	can	break	all	of	these	in	polynomial	time.

Post-quantum	schemes

Merkle-Lamport Based on	secure	hash	functions

Lattice-based
Based	on	short	integer	solution	problem

Based on	(ring)	learning-with-errors	problem

Code-based Based	on	bounded distance	decoding	problem

Multi-variate quadratic

Typically	hash	long	message	to	short	string	then	sign	short	string
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Key	Exchange:	Overview

• Two	parties	establish	an	authenticated	secret	
session	key that	they	can	use	to	exchange	
encrypted	data

• Useful	for	entity	authentication,	
confidentiality,	data	origin	authentication,	
integrity



Key	Exchange:	Protocol
Example:	Unauthenticated	Diffie–Hellman

Let g be a generator of a cyclic group of prime order q.

Alice Bob

x

$ {1, . . . , q � 1} y

$ {1, . . . , q � 1}
X  g

x

Y  g

y

X�!
Y �

k  Y

x

k  X

y



Key	Exchange:	Protocol
Example:	Signed	Diffie–Hellman

Let g be a generator of a cyclic group of prime order q.

Alice Bob

(sk

A

, pk

A

) SIG.KeyGen(1�) (sk

B

, pk

B

) SIG.KeyGen(1�)
obtain pk

B

obtain pk

A

x

$ {1, . . . , q � 1} y

$ {1, . . . , q � 1}
X  g

x

Y  g

y

�

A

 Sign(sk
A

, X) �

B

 Sign(sk
B

, Y )

X,�A�!
Y,�B �

abort if Verify(pk
B

, Y,�

B

) = 0 abort if Verify(pk
A

, X,�

A

) = 0

k  Y

x

k  X

y



Key	Exchange:	Security

Attack	scenarios

• adversary	can	control	
communications,	

• learn	session	keys	of	other	
sessions,	

• learn	parties’	long-term	
keys	(“forward	secrecy”)

• learn	parties’	random	coins

Indistinguishability
of	session	key

• hard	to	distinguish	the	
real	session	key	from	
random	string	of	the	
same	length

Security	goal:	indistinguishability of	session	keys	
under	various	attack	scenarios.



Key	Exchange:	Schemes
Commonly	used	schemes

RSA	key	transport Based	on	factoring

Signed-Diffie–Hellman Based	on	finite-field	discrete	logarithms

Signed	elliptic curve	
Diffie–Hellman Based	on	elliptic	curve	discrete logarithms

MQV	/	ECMQV Based	on	discrete	logarithms

Quantum	impact: Shor’s algorithm	can	break	all	of	these	in	polynomial	time.

Post-quantum	schemes

Lattice-based	key	exchange
Based on	(ring)	learning-with-errors	problem

Based	on	NTRU	problem

Code-based	key	exchange Based	on	bounded	distance	decoding	problem

Isogenies-based	key	
exchange Based	on	isogenies	on	super-singular elliptic	curves

Quantum	key	distribution Information-theoretically	secure	based	laws	of	
quantum	mechanics
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Matching	key	sizes
• Applications	often	use	multiple	cryptographic	primitives	

together
• Only	as	secure	as	strength	of	weakest	scheme	/	key
• Lots	of	recommendations	based	on	forecast	computational	

power	(but	not	cryptographic	breakthroughs!)
– http://www.keylength.com/

Security Cipher Hash	size Finite	field	
(RSA/DSA)

Elliptic	curve

Short-term	
protection

80 160 approx. 1024 160

Medium	
(e.g.	until	
2030)

128 256 2048-3072 256

Long-term
(e.g.	past	2030)

256 512 approx. 15360 512



Lots	more	cryptographic	primitives

• minicrypt:	oblivious	transfer,	bit	commitment
• identity-based	encryption,	attribute-based	
encryption,	functional	encryption

• group	signatures
• fully	homomorphic encryption
• secure	multi-party	computation
• password-authenticated	key	exchange
• client	puzzles	/	proofs	of	work	->	Bitcoin,	…
• …


